Medidas de posición en datos agrupados
Los cuantiles son medidas de posición que se determinan mediante un método que determina la ubicación de los valores que dividen un conjunto de observaciones en partes iguales.
Los cuantiles son los valores de la distribución que la dividen en partes iguales, es decir, en intervalos que comprenden el mismo número de valores. Cuando la distribución contiene un número alto de intervalos o de marcas y se requiere obtener un promedio de una parte de ella, se puede dividir la distribución en cuatro, en diez o en cien partes.
Los más usados son los cuartiles, cuando dividen la distribución en cuatro partes; los deciles, cuando dividen la distribución en diez partes y los centiles o percentiles, cuando dividen la distribución en cien partes. Los cuartiles, como los deciles y los percentiles, son en cierta forma una extensión de la mediana.
Para algunos valores u , se dan nombres particulares a los cuantiles, Q (u):

CUARTILES
Los cuartiles son los tres valores que dividen al conjunto de datos ordenados en cuatro partes porcentualmente iguales.
Hay tres cuartiles denotados usualmente Q1, Q2, Q3. El segundo cuartil es precisamente la mediana. El primer cuartil, es el valor en el cual o por debajo del cual queda un cuarto (25%) de todos los valores de la sucesión (ordenada); el tercer cuartil, es el valor en el cual o por debajo del cual quedan las tres cuartas partes (75%) de los datos.

Como los cuartiles adquieren su mayor importancia cuando contamos un número grande de datos y tenemos en cuenta que en estos casos generalmente los datos son resumidos en una tabla de frecuencia. La fórmula para el cálculo de los cuartiles cuando se trata de datos agrupados es la siguiente:
k= 1,2,3
Donde:
Lk = Límite real inferior de la clase del cuartil k
n = Número de datos
Fk = Frecuencia acumulada de la clase que antecede a la clase del cuartil k.
fk = Frecuencia de la clase del cuartil k
c = Longitud del intervalo de la clase del cuartil k
Si se desea calcular cada cuartil individualmente, mediante otra fórmula se tiene lo siguiente:
El primer cuartil Q1, es el menor valor que es mayor que una cuarta parte de los datos; es decir, aquel valor de la variable que supera 25% de las observaciones y es superado por el 75% de las observaciones.
DECILES
Los deciles son ciertos números que dividen la sucesión de datos ordenados en diez partes porcentualmente iguales. Son los nueve valores que dividen al conjunto de datos ordenados en diez partes iguales, son también un caso particular de los percentiles. Los deciles se denotan D1, D2,…, D9, que se leen primer decil, segundo decil, etc.
Los deciles, al igual que los cuartiles, son ampliamente utilizados para fijar el aprovechamiento académico.
Datos Agrupados
Para datos agrupados los deciles se calculan mediante la fórmula.

k= 1,2,3,… 9
Donde:
Lk = Límite real inferior de la clase del decil k
n = Número de datos
Fk = Frecuencia acumulada de la clase que antecede a la clase del decil k.
fk = Frecuencia de la clase del decil k
c = Longitud del intervalo de la clase del decil k
CENTILES O PERCENTILES
Los percentiles son, tal vez, las medidas más utilizadas para propósitos de ubicación o clasificación de las personas cuando atienden características tales como peso, estatura, etc.
Los percentiles son ciertos números que dividen la sucesión de datos ordenados en cien partes porcentualmente iguales. Estos son los 99 valores que dividen en cien partes iguales el conjunto de datos ordenados. Los percentiles (P1, P2,… P99), leídos primer percentil,…, percentil 99.
Datos Agrupados
Cuando los datos están agrupados en una tabla de frecuencias, se calculan mediante la fórmula:

k= 1,2,3,… 99
Donde:
Lk = Límite real inferior de la clase del decil k
n = Número de datos
Fk = Frecuencia acumulada de la clase que antecede a la clase del decil k.
fk = Frecuencia de la clase del decil k
c = Longitud del intervalo de la clase del decil k